
A Framework for MLS Interoperability

Myong H. Kang , Judith N. Froscher, and Ira S. Moskowitz
Information Technology Division, Mail Code 5540

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, D.C. 20375, USA
e-mail: mkang@itd.nrl.navy.mil

Abstract
Distributed object-oriented computing (DOC) is a new
computing paradigm that promotes component-based
development, location independence, scalability, software reuse,
etc. Users of multilevel security (MLS) technology want to take
advantage of these new technologies. However, the process of
incorporating new technologies into MLS products is slower
than the analogous process for non-secure commercial products
because MLS products must go through rigorous
evaluation/certification procedures.

We propose an architectural framework that speeds up the
process of introducing new technologies to MLS users. We
examine the drawbacks of traditional MLS approaches and take
a fresh look at the requirements of MLS users. We then
introduce security-critical components that can enable MLS
solutions and an MLS architectural framework that can
accommodate not only legacy systems but also new
technologies, including DOC, without jeopardizing system
security. Our framework separates security critical
components/functions from the rest of the system because these
components must go through rigorous evaluation/certification
processes. This approach enables the secure use of new
technologies for MLS users.

1. Introduction

The trend of computing today is toward open1, distributed,
object-oriented computing (DOC). CORBA2 and OLE/COM3

are evolving standards for these trends. This new computing
paradigm is motivated by component based development,
location independence, scalability and fault-tolerance, software
reuse, etc. In this paradigm, clients send requests to servers and
servers return results. Clients know neither where a particular
server is located nor which server is serving the request. A
broker mediates all accesses (e.g., object request broker in
CORBA and COM in OLE/COM). The broker receives requests
from the client, finds the object implementation for the request,
transmits the request to a server, and returns the output to the
client.

Even though DOC promotes desirable features such as
interoperability among heterogeneous systems, wrapping legacy
applications with objects, and so on, it creates new problems

1 “Open” simply means that the interfaces/protocols are published.
2 CORBA (Common Object Request Broker Architecture) is from the
Object Management Group.
3 OLE/COM (Object Linking and Embedding/Component Object
Model) is from Microsoft Inc.

which must be addressed. Some important concerns in DOC
environments are:
1. authentication and access control of clients to server

objects,
2. privacy, integrity and authenticity of messages in the

underlying network, and
3. availability/fault-tolerance.

The multilevel security (MLS) community has rarely addressed
the third concern, the first two concerns have been the main
topics of the MLS community for the past 20 years. Therefore,
the DOC community can use the techniques developed by the
security community for the solutions to concerns (1) and (2).
Concern (3) is beyond the scope of this paper.

Enterprises, including the Department of Defense, have certain
information to which access must be restricted. The enterprises
determine levels of trustworthiness (clearances) for their users.
Information is marked with a sensitivity level. By comparing a
user’s level of trustworthiness with the sensitivity level of
information, either a manual or automated procedure can make
access control decisions. In an automated system, the
mechanisms responsible for making access control decisions
must be trusted and are extremely difficult and expensive to
develop, evaluate, and certify. MLS systems have a small
amount of trusted software that protects the system and the data.
The untrusted software in an MLS system may contain
malicious code, which can exploit vulnerabilities in the trusted
software to leak information. In DOC, such vulnerabilities not
only threaten information on a given system, but put all high
level information in the confederation at risk. Hence, strong
separation (e.g., physical separation or very high assurance
separation) of data is essential to enable interoperability among
users while protecting sensitive information. Users must be able
to ensure security when accessing the information they need to
do their jobs, while also taking advantage of the rapid advances
made in information technology. Hence, there is a growing need
for finding MLS solutions for DOC.

Client
Object

Server
Object
Implementation

Object Request Broker (ORB)

Figure 1: The architecture of a CORBA ORB

To date, MLS products typically lag new technology because
security vendors must develop MLS versions of the new
technology, and must convince independent third parties that the
protection features are effective. The MLS versions of new
technology often trade compatibility, performance, and
capability for protection. However, users who must protect
classified data also want to take advantage of the full
functionality of the new technology as soon as possible.

In this paper, we explain what problems result from the naive
application of traditional MLS technology to the DOC
environment, and we propose an alternative approach that can
speed up the process of introducing new technologies to MLS
users and promote information sharing.

Note that the current security work of the DOC community is
mainly concentrated on network security and access control
mechanisms within a single security level [19]. Here, however,
we present a framework of multilevel security, which requires
strong separation, that can incorporate the security work of the
DOC community.

2. Difficulties with the Naive Extension of Traditional MLS
Approaches to Distributed Environments

Traditionally, the MLS community has concentrated on
developing computer systems based upon a trusted computing
base (TCB). In general, TCBs have a mandatory access control
mechanism that is based on the Bell-LaPadula policy (BLP) [1].
BLP is a specific access control policy that is based on a widely
accepted information security policy which can be summarized
as “no high level information is allowed to pass to lower level
users/processes and lower level information should be available
to higher level users/processes.”

Since user requirements in MLS computing environments hardly
differ from those for non-MLS computing environments, future
MLS computing environments will be distributed and client-
server architecture based. The need for information sharing will
be greater in the future. Recently, the composition of MLS
systems was investigated to address the problems of distributed
MLS computing [17]. In the following, we examine difficulties
of a naive extension of the traditional MLS approaches to
distributed environments.

server client workstation TCB

S1
S2

S3

multilevel secure server multilevel secure workstation

Figure 2: A TCB-based distributed system

2.1. General difficulties
Figure 2 shows an architecture that connects MLS systems to
form a distributed MLS system. This architecture shows the
naive extension. By this we mean that security level i in system
j communicates only to level i in system j’ . As we can see,
TCBs reside on every system. In figure 2, a server may be a
computer system or represent a cluster of servers for an
organization.

Let us examine some problems associated with such a naive
extension of the conventional MLS computing paradigm to
client-server based distributed environments.

2.1.1. Assurance class of the whole system
If TCBs from different classes of assurance (e.g., B1, B2, etc. of
TCSEC [4]) are naively composed to build a distributed system,
the assurance class of the whole system can be no greater than
the assurance class of the lowest among the TCBs. This is true
because the vulnerability of the whole system is determined by
the most vulnerable part of the system.

Therefore, when MLS systems are naively connected to
compose an MLS distributed system, the effect of each
connected system to overall composition has to be considered
carefully. This hampers the interoperability efforts significantly
because an organization which has higher assurance (hence,
usually expensive) computer systems may be reluctant to
connect to another organization that has lower assurance
computer systems. In the naive extension, effective protection of
secret information must be traded against interoperability.

2.1.2. Migration of legacy systems
There are many existing system-high4 computer systems (i.e.,
these systems are not TCB based and may be out-dated). As the
computing paradigm changes and the need to share information
increases, these legacy systems need to be connected to other
systems without violating the security policy of the
federation/composition.

The naive composition of MLS systems that was depicted in
figure 2 does not provide a simple way for a legacy system to be
connected to and to share information with other systems.
Therefore, it is desirable to come up with a distributed MLS
architecture that can provide a way to incorporate legacy
systems.

2.1.3. Migration to new technologies
Computer (hardware and software) technologies are changing
rapidly. In general, MLS systems are much slower than non-
MLS systems to adopt new technologies because MLS systems
have to go through rigorous (thus long) development, evaluation
and certification processes. Potential users of MLS technology
are reluctant to use old technology for the sake of MLS.
Therefore, MLS research should promote/allow using non-MLS
components securely as much as possible so that when a new
technology is available, non-MLS components can be replaced
without jeopardizing system security.

4 System-high computer systems are non-MLS (i.e., single level)
systems that contain data at all security levels up to and including that
level. All personnel who access the system have a clearance and all
computer facilities are protected according to the requirements for the
highest classification of material contained in the system.

2.1.4. Application programs
The number of application programs running on MLS platforms
is much smaller than that of application programs running on
non-MLS platforms. Hence, the choice of application programs
for MLS users is limited. Also, there are many application
programs that run on legacy systems. Those programs may have
to go through extensive modification to run on MLS systems.
This is another reason for an MLS architecture that allows as
much use of non-MLS components as possible.

2.1.5. Cost
In general, TCB based systems are much more expensive than
non-MLS equivalent systems. Replacing all existing computer
systems with TCB based systems is not practical. Therefore, an
MLS architecture that allows as many non-MLS products as
possible is also cost-efficient. Such an architecture should be
able to assign MLS and other critical functions to as few
components as possible. In this case only the critical
components need to go through a rigorous evaluation process,
thus reducing the overall cost.

2.2. Technical difficulties
As we mentioned, BLP is a specific interpretation of a widely-
accepted information security policy. BLP is expressed in terms
of subjects and objects (to avoid confusion, we call Bell-
LaPadula subjects, “BLS”, and Bell-LaPadula objects, “BLO”,
for the rest of the paper). A BLO is a passive entity such as a file
or segment that contains or receives information. A BLS is an
active entity such as a user or a process, that causes changes to
system states or to BLOs. A level is associated with each BLS or
BLO. BLP expresses a dominance5 (≥) relationship between
BLS and BLO is as follows:

1. Simple security property: A BLS has read access to a
BLO only if the security level of the BLS dominates the
security level of the BLO.

2. ★-property (Star property): A BLS has write access to a
BLO only if the security level of the BLS is dominated by
the security level of the BLO.

Note that BLSs and BLOs are static entities (i.e., in general, a
BLS is always a subject and a BLO is always an object).
However, in the DOC paradigm, there are client objects and
server objects. A client object sends a message to server objects
to receive services, and a server object returns answers to the
client object. Also, the concept of client and server is not static
(i.e., objects can alternate between client and server roles).

BLP was well suited for monolithic MLS systems that focused
on system level security. However a direct extension of BLP to
the DOC paradigm has some difficulties. Hence, we may need to
go back to the original security policy underlying BLP that is
based on information flow and re-examine the security of the
entire system.

The naive extension of the traditional MLS approach to
distributed systems has another difficulty. BLP allows a BLS
from a higher level to access information from lower level
BLOs. Since, under BLP, a higher level BLS cannot send

5 Level L2 is said to dominate (strictly dominate) level L1, L2 ≥ L1 (L2
> L1), if the hierarchical classification of L2 is greater than or equal
(and not equal) to that of L1 and non-hierarchical categories of L2
include all those of L1 as a subset.

requests to lower level BLOs, the underlying TCB provides
read-down capability that allows it to share lower level
information with a higher level BLS. However, in the DOC
environments, the lower level information may be located in
separate computers which have either different TCBs that
control access to different ranges of security levels, or operating
systems that may not even have a TCB (see figure 3 where
security levels are L1 < L2 < L3 < L4 and dashed lines represent
desired connections).

[L2, L1]

[L4, L3]

[L1]

Figure 3: Mixture of MLS and non-MLS systems

Since read-down from one system to another is not guaranteed,
and sending requests to lower level systems is prohibited, new
ways to share information are needed for new MLS computing
paradigms.

One may argue that an MLS object request broker (ORB) solves
the problem. Some difficulties with the MLS ORB approach are
as follows:
• High assurance MLS ORB may not be practical because

the customer base of MLS technology is not as broad as
that of non-secure technology.

• Even if a high assurance ORB would be developed,
sending requests from higher level clients to lower level
servers introduces security vulnerabilities (i.e., covert
information can be hidden in legitimate requests). A
similar approach has been tested and abandoned for
security reasons [8].

In the following section, we examine a few typical MLS
distributed configurations and derive functional requirements
based on the information security policy.

3. Key Configurations of MLS Distributed Systems

There are compelling operational reasons for sharing
information among computer systems from different security
levels without violating the security policy of the federation.
These requirements force many systems (including system-high
and legacy systems) to be connected to a network. In this
section, we consider possible configurations and derive
functional requirements. Critical components that can meet the
functional requirements are discussed in the following section.
As a convention, we use L1, L2, L3, and L4 as security levels
where L1 < L2 < L3 < L4.

3.1. Configuration 1
We show the simplest configuration for connecting systems
from two different levels in figure 4.

low level
system-high system

high level
system-high system

Figure 4. Two system-high systems need to be connected

In this configuration, a low level system-high system and a high
level system-high system are connected through a network. The
regular dotted line in figure 4 represents a logical security
boundary between two levels and the thick dashed line
represents a needed connection. An application of this type of
architecture to the Joint Maritime Command Information
System, an integrated C4I system, is described in detail in [5].

3.2. Configuration 2
The cost of building a large long-haul network (e.g., Internet)
remains high, which encourages the sharing of network
resources. Some organizations may have their dedicated system-
high LAN already. Other organizations may already have an
MLS LAN. These organizations may also want to connect their
LAN to a long-haul network to access information. Sometimes
higher level users may need to access lower level computing
resources (e.g., information, hardware). Figure 5 shows such an
architecture.

L3 systems

L1 network

 L4
network

multilevel
 network

L1 systems L4 systems

L2
systems

Figure 5: L4 and MLS networks need be connected to a long
haul L1 network

3.3. Functional requirements
The question is how to connect systems from different security
levels and meet the operational needs without compromising the
security of the (federated) system. What are the functional
requirements necessary for promoting information sharing in the
new architectures? (Of course, higher level information may not
be shared with lower level users, but lower level information
should be accessible by higher level users.) We list a few
functional requirements below.

• Information flow from low to high systems. Higher level
messages/requests cannot flow to lower level systems.
However, lower level information can flow/replicate to
higher level systems without violating the security policy.
Of course, information that has to be sent from low to high
systems has to be pre-arranged between
organization/systems. The infrastructure for providing this

service must be a part of new MLS architectures. If some
information is replicated to higher level systems, the
consistency of the replica is an important problem. Details
of maintaining consistency of the replica can be found in
[9, 20].

• Privacy, integrity, authenticity of information. In an open
distributed computing environment, privacy, integrity, and
authenticity of information are important concerns.
Cryptographic techniques can be useful in these cases.

• Higher level users may need to access lower level
resources. Recently, large amounts of valuable information
have been made available in lower level networks (e.g.,
Internet web sites). Even though some lower level
information can be sent (replicated) to higher level systems,
not all necessary information can be replicated to higher
level systems (because, sometimes, the usage of lower level
information at a higher level system is difficult to predict).
Hence, the high level users may need to search through
lower level information. Note that the security requirement
here is to provide the capability for a high level user to
login to lower level services as a low user.

• Availability of resources. In the DOC environment,
malicious/nonmalicious users/processes can monopolize
computing resources. Also failure of a single component
can hamper a critical operation. Special mechanisms are
needed to prevent/alleviate such misuse/failure.

• Downgrading. Some information from higher level systems
may need to be released to lower-level users (e.g., out dated
information, after removing critical portions). Note that this
requirement violates the security policy.

4. Critical Components

In the previous section, we examined the functional
requirements for MLS federations. In this section, we identify
some critical components that can help to satisfy the functional
requirements. These critical components, in conjunction with
some other techniques (e.g., replication), will form the backbone
of a new security framework that will be presented in section 5.

The security critical components should be designed
independently of any specific computing paradigm so that these
components can be used with any existing technology and
possibly emerging technologies (i.e., separation of concerns).
Cryptographic components are well-known examples of such
independence. In other words, a cryptographic module does not
have any knowledge about incoming data (e.g., object, file, etc.).
It simply receives a bit stream and outputs another bit stream.
The interpretation and the use of this bit stream is entirely up to
the application programs that use a cryptographic module.

Note that there is no one component that can solve the
availability/fault-tolerant problem of the system. This problem
can be solved by a mixture of careful design of each component
and special techniques for fault-tolerance [15].

4.1. One-way communication components
When the information is propagated from lower level to higher
level systems, we need a one-way communication component
that assures that this communication preserves the secure
information flow.

Let us consider some requirements of this component.

1. Confidentiality: In an MLS system, the confidentiality of
high information is enforced by disallowing information
flow from high to low.

2. Reliability: One-way communication components should
give assurance that the messages will be delivered.
Message delivery can fail or be delayed due to (1)
communication medium failure, or (2) the failure of the
message receiver, etc. In general, reliable communication
protocols are based on two-way communication. A sender
sends a message and a receiver sends an acknowledgment
(ACK) back to the sender. If the sender receives NAK or
time-out, the sender re-sends the message. Reliability is an
especially important issue in MLS systems because higher
level receivers are not allowed to send acknowledgments
(ACK or NAK) to lower level senders. Hence, if reliability
and confidentiality requirements have to be satisfied
simultaneously, controlled compromise must be the answer.

3. Flow control: The resources that are involved in delivery
of messages may not always be available due to high traffic
volume at certain periods of time. This component should
provide a means for controlling the incoming traffic
volume so that messages are not lost due to lack of
resources.

4. Fairness and availability: This one-way component is, in
general, a shared resource among many senders and
receivers and should be shared fairly among senders. If a
particular sender monopolizes a resource, so that other
senders cannot use their fair share of resources, it is not
only a fairness issue but also an availability (denial of
service) issue. Hence, this component should be able to
execute the system’s fairness policy [13] and resist any
potential misuse, including malicious denial of service
attack.

5. Performance: Many one-way components intentionally
delay the ACK time to reduce the covert channel capacity
[6]. However, throughput and latency of this component
may be as important as security. Hence, this component
should have minimal impact on performance.

6. Flexible implementation: Distributed systems are usually
dynamic. New members may be added to the system
dynamically, and message traffic of the network is usually
quite difficult to predict. Therefore, a one-way
communication component should be flexible enough so
that not only many different connection policies can be
implemented but also resources can be re-allocated
depending on dynamic workload.

Kang and Moskowitz introduced the basic NRL Pump as a
device that balances these requirements [10, 12]. Note that no
device can totally satisfy all requirements [18]. The Pump has
been expanded [13] to deal with the network environment's
added complications of fairness and denial of service. An
abstract view of the Pump is shown in figure 6.

statistically statistically
modulatedmodulated
ACKsACKs

PumpPumpLowLow HighHigh
messagesmessages messagesmessages

ACKsACKs

Figure 6: Basic Pump: The Pump with one sender and one
receiver

The Pump establishes reliable and secure one-way
communication between Low (a low level sender) and High (a
high level receiver) by establishing a two-way reliable
communication to Low and a two-way reliable communication
to High. The Pump itself has to be reliable and recoverable to
maintain reliable delivery service. Also, the ACKs to Low
should be minimally affected by ACKs from High (otherwise,
this ACK stream can be used to covertly pass information from
High to Low). The Pump places a non-volatile buffer (size n)
between Low and High, and gives ACKs at probabilistic times
to Low based upon a moving average of past m High ACK
times [10, 12]. A High ACK time is the time from when the
Pump sends a message to High to the time when the Pump
receives ACK from High. The probabilistic ACK to Low
introduces noise into the Low ACK stream without degrading
performance. If we consider the Pump to be at the high level, the
ACKs from the Pump to Low violate the security policy6.
However, the Pump is designed so that even though the security
requirements are violated, the covert information leakage can be
minimized while still satisfying the other requirements.

One can think of the Pump as a specialized network among low
senders and high receivers. Hence, the Pump could be
implemented as a (write-up) service of a MLS network (e.g.,
Boeing A1 MLS LAN [7]). The generalized Pump [14] can
deliver messages from any sender to any receiver as long as the
security policy is not violated. In this configuration, the role of
sender and receiver is dynamically configured. Hence, a sender
at one time can be a receiver at another time and vice versa.
Note that such a dynamic role change is well suited for the DOC
environment.

4.2. Cryptographic components
In general, commercial communication networks are insecure.
Therefore, privacy, authenticity, and integrity of messages in
the network are great concerns. Cryptographic techniques guard
against such threats effectively. There are many known
algorithms and protocols of this kind (i.e., encryption/decryption
schemes, digital signatures, authentication systems) and ample
literature is available. We therefore do not go into them in detail
in this paper.

4.3. Multilevel secure (MLS) workstations
Some lower level information that is regularly used by higher
level users/processes can be replicated from lower level to
higher level systems. However, there is some unpredictable
information that is needed by higher level users from time to
time. One way to accommodate such needs is to use dedicated
single-level workstations for lower level access (i.e., a high user
may have more than one workstation). This is a very secure way
to access lower level information.

However, if it is necessary to access several levels of
information simultaneously or to copy and paste from one level
to another level, then high assurance MLS workstations7 can be
used by the higher level users (thus a high user has only one
MLS workstation). High level users who need to access lower

6 Since the Pump is a trusted component, we can accept this limited
security violation.
7 Each organization that permits the use of multilevel workstations must
accept the risk of potential information compromise.

level information can login to lower level systems through a
lower level window on MLS workstations.

There are some efforts to implement trusted X-windows on
TMACH8. However, we believe that there should be more
effort in this direction. For example, an alternative approach to a
two level workstation that is based on physical separation is
given in figure 7.

High level
untrusted OS on
untrusted hardware

Low level
untrusted OS on
untrusted hardware

High level
network

Low level
network

Two level workstation

TCB

: Pump : Downgrader

U
S
E
R

Figure 7: Simplified view of MLS workstations

All MLS workstation users are cleared to access information of
the highest available level. An untrusted operating system exists
on untrusted hardware for each security level. The TCB acts as a
trusted switchboard that connects the user to the correct
untrusted system based on the user’s request. If the MLS
workstation allows the copy and paste function from a low level
window to a high level window, a Pump like one-way
component may be needed. If it also allows the copy and paste
function from a high level window to a low level window, then a
downgrader component is necessary. Since this approach is
based on physical separation, it may be easier to be
evaluated/certified.

Since this type of MLS workstation can provide a capability to
access (read and write) several levels, it may be used as a
platform to execute trusted MLS applications [3].

4.4. Downgraders
Downgraders are necessary components but are also high risk
components. It is well known that secret information can be
encoded inside innocent looking images, e.g., [2]. Hence,
human review may not be adequate to guarantee the prevention
of information leakage. There are some downgraders known as
guards (e.g., SAGE9). The use of such devices should be
minimized because downgrading operations can potentially leak
a large amount of information. One way to minimize the use of
this device is to store information at the correct security level in
the first place (i.e., there is a tendency to overclassify
information and later downgrade it).

5. Architectural Solutions

Drawbacks of extending traditional MLS approaches to DOC
have been discussed in section 2. In section 3, the needs of
MLS users are described. In this section, we propose solutions
to two configurations that were introduced in section 3. We also
explain how the critical components that were introduced in
section 4 can be used in our architectural framework. Our

8 TMACH is Trusted MACH operating system from TIS Inc.
9 SAGE is a standard automated guard environment from WANG.

solution is based on the separation of security critical functions
from non-security critical functions.

From configurations 1 and 2, the overall system requirements
can be summarized as follows:

• High level users/processes need to frequently access a
portion of low level information.

• The messages on a non-secure network need to be
protected.

• Occasionally, there is some information that needs to be
downgraded.

• There are a few high level users who need to occasionally
browse low level information.

Recall that the system security policy can be expressed in terms
of information flow:

No high level information should pass to lower level
users/processes and lower level information should be
available to higher level users/processes.

Our proposed solutions do not assume an MLS ORB due to
reasons described in section 2.2. However, we want to take
advantage of all the security services of CORBA or COM within
a single level (hence, an ORB per security level). When lower
level information or services are needed by higher level users,
those can be shared through (1) replication of lower level
information to higher level systems or (2) high level user’s
direct access to lower level systems through a dedicated or MLS
workstation. Which information has to be replicated depends on
system (security) design. If the need for lower level information
by high level users/processes is known (predicted), then it
should be replicated.

5.1. A secure architecture for configuration 1
Configuration 1 shows the need to connect system-high systems.
Figure 8 shows our proposed solution to such needs.

The low information that is used frequently by high level
systems can be replicated to high systems through the Pump.
How often the replicas have to be updated can be determined by
the type of information and the usage of information at the high
level. The SINTRA MLS database system [9, 11] uses
replication as a method to share lower level information with
higher level systems. Also, there are several known algorithms
that guarantee consistency between primary data and replicas [9,
20]. If the network is not physically secured then cryptographic
components can be used to protect information on the network.

low level
system-high systems

DG

high level
system-high systems

Pump

DG

: Downgrader : Cryptographic component

Figure 8: Architectural solution to configuration 1

When high level users need to share sanitized versions of
information with lower level users, they can do so through a
downgrader. MLS workstations can be used when high level
users need to browse lower level information. The low level
portion of the MLS workstation is directly connected to the low
level system/network. Hence, this operation does not violate the
information security policy of the system. Note that the Pump
and the downgrader are trusted high level components and
should be protected accordingly.

5.2. A secure architecture for configuration 2
The proposed solution to configuration 2 (see figure 9) is
similar to that of configuration 1 except that we now include a
MLS network. In this case, the generalized Pump can be
implemented as a write-up (one-way) service for the MLS
network.

L3 systems

L1 network

 L4
network

multilevel
 network

L1 systems
L4 systems

L2
systems

Pump

Figure 9: Architectural solution to configuration 2

Note that we did not present a complete solution in the figure
due to cluttering -- only a few critical components are inserted
between systems where we wish to be specific. For example,
since the generalized Pump is a service of an MLS network, we
do not show this component in figure 9; however, it is implicitly
there. Of course, depending upon the actual security
requirements, the configuration might require additional security
measures (e.g., link encryption, prevention of traffic analysis).

5.3. Design review
In section 3.3, we specified functional requirements. Let us
review how the proposed architectural solutions meet the
requirements.

• Information flow from low to high system. If lower level

information needs to be sent to higher level systems: (1) the
information is encrypted and authenticated (if necessary),
(2) it is sent to the Pump through a network, (3) it is
delivered to the final destination, and (4) it is decrypted and
verified (if necessary). Note that steps (3) and (4) can be
reversed depending on system requirements (see [16] for
covert channel analysis).

• Privacy, integrity, authenticity of information. If
information travels through an unprotected portion of
network and the information needs protection, then
cryptographic components can be used.

• Higher level users may need to access lower level
resources. If higher level users need to access lower level
information that has not been replicated to a higher level
system, then a higher level user can login to lower level

system through a MLS workstation. If the network is not
protected and the information requires protection then
cryptographic techniques should be used.

• Availability of resources. No single technique can solve
this problem, although the fault-tolerant community uses
replication to increase availability [15]. Our proposed
architectures use replication as a way to share lower level
information with higher level processes/users. We believe
that smart replication engineering can help to achieve the
goals of availability, performance, and sharing with
minimal replication.

• Downgrading. If there is a need to downgrade information
then a downgrader should be used (see figure 8). If the
downgraded information is still at a higher security level
than the security level of the unprotected portion of the
network, then cryptographic techniques should be used.

Additional benefits of our approach are as follows:

• Reduced cost. The overall cost of our approach will be
much lower than that of the naive extensions of the
traditional MLS approach because our approach
encourages the use of commercially available products.

• Provision of a migration path for legacy systems. Legacy
systems can participate in new federations without
jeopardizing security because these systems are isolated by
security critical components.

• Provision of a migration path to new technologies. When
new products or technologies are available, an organization
can incorporate these in the federation without affecting
other organization/systems. This is true because systems
from different organizations are strongly separated by
security critical components.

Promotion of sharing, security, and autonomy. Since the
security of our proposed approach is flexible and easy to
understand, it encourages organizations to participate in
federation, and while retaining full control of their own systems.
Each organization can decide which critical components are
needed, depending on their own security and functionality
needs.

6. Conclusions

Users of MLS technology want to take advantage of new
technologies. In general, incorporating new technology into
MLS products is slower than that to non-secure products due to
the rigorous and long evaluation and certification processes.

In this paper, we proposed an architectural framework that can
speed up the process of introducing new technologies (e.g.,
distributed object-oriented computing) to the MLS community.
We examined the drawbacks of traditional MLS approaches and
took a fresh look at the needs of the MLS community. We then
introduced critical components that can facilitate the needs of
the MLS community. Since these components must go through a
rigorous evaluation and certification processes, they should be
as independent as possible from non-critical technology. We
then introduced architectural solutions to the needs of the MLS
community. The proposed solution is based on a “separation of
concerns” principle: the security critical components should be
separated from non-security components. We believe the
proposed approach reduces cost, provides a migration path for

legacy systems and to new technologies, and promotes
information sharing while maintaining the security and
autonomy of organizations.

Our architectural solution provides a framework to share
information securely. In our framework, the operational security
policy is based on information flow among different security
levels. Under the framework that we have discussed, more
research is needed to make a secure federation acceptable to
MLS users. One such research area is data security engineering:
how to organize data to make the sharing as smooth as possible
with minimal overhead.

Acknowledgments

We thank Steven Greenwald and Ruth Heilizer for their helpful
comments.

References
1. Bell, D. E. and LaPadula, L. J. “Secure computer system:

Unified exposition and multics interpretation,” The Mitre
Corp. 1976.

2. Cha, S. D., Park, G. H., and Lee, H. K. “A solution to the
on-line downgrading problem,” Proceedings of 11th
Computer Security Applications Conference, pp. 108 - 112,
New Orleans, LA, 1995.

3. Costich, O. and Kang, M. H. “Maintaining multilevel
transaction atomicity in MLS database systems with
replicated architecture,” Proceedings of 7th Annual IFIP
WG11.3 Working Conference on Database Security, pp.
216 - 240, Huntsville, AL, 1993.

4. Department of Defense, “Trusted computer system
evaluation criteria,” DoD5200.28-STD, 1985.

5. Froscher, J. N., Golschlag, D. M., Kang, M. H., Landwehr,
C. E., Moore, A. P., Moskowitz, I. S., and Payne, C. N.
“Improving inter-enclave information flow for a secure
strike planning application,” Proceedings of 11th Computer
Security Applications Conference, pp. 89 - 98, New
Orleans, LA, 1995.

6. Hu, W. M. “Reducing timing channels with fuzzy time,”
Proceedings of IEEE Symposium on Security and Privacy,
pp. 8 - 20, Oakland, CA. 1991.

7. Janeri, J. V., Darby, D. B., and Schnackenberg, D. D.,
“Building higher resolution synthetic clocks for signaling
in covert timing channels,” Proceedings of IEEE Computer
Security Foundations Workshop, pp. 85 - 95, Ireland,
1995.

8. Jensen, C., et. al. “SDDM: A prototype of a distributed
architecture for database security,” Proceedings of
Conference on Data Engineering, 1989.

9. Kang, M. H., Froscher, J. N., and Costich, O. “A practical
transaction model and untrusted transaction manager for
multilevel-secure database systems,” Proceedings of 6th
Annual IFIP WG11.3 Working Conference on Database
Security, pp. 289 - 310, 1992.

10. Kang, M. H. and Moskowitz, I. S. “A Pump for rapid,
reliable, secure communication,” Proceedings of ACM
Conference on Computer & Communication Security, pp.
119 - 129, Fairfax, VA, 1993.

11. Kang, M. H., Froscher, J. N., McDermott, J., Costich, O.,
and Peyton, R. “Achieving database security through data
replication: The SINTRA prototype,” Proceedings of 17th
National Computer Security Conference, pp. 77 - 87,
Baltimore, MD. 1994.

12. Kang, M. H. and Moskowitz, I. S. “A data Pump for
communication,” submitted for publication, also available
as NRL Memo. Report 5540-95-7771, 1995.

13. Kang, M. H., Moskowitz, I. S.. and Lee, D. C. “A network
Pump,” IEEE Transactions on Software Engineering, vol.
22, no. 5, pp. 329 - 338, 1996.

14. Kang, M. H. and Moskowitz, I. S. “A generalized Pump,”
In preparation.

15. Maffeis, S. “Adding group communication and fault-
tolerance to CORBA,” Proceedings of USENIX
Conference on Object-Oriented Technologies, Monterey,
CA, 1995.

16. Meadow, C. and Moskowitz, I. S. “Covert channels - A
context based view,” Proceedings of the Workshop on
Information Hiding, Cambridge, UK, 1996.

17. McLean, J. D. “A general theory of composition for trace
sets closed under selective interleaving functions.”
Proceedings of 1994 IEEE Computer Society Symposium
on Research in Security and Privacy, pp. 79 - 93, Oakland,
CA, 1994.

18. Moskowitz, I. S. and Kang, M. H. “Covert channels ---
Here to stay?,” Proceedings of COMPASS ‘94, pp. 235 -
243, Gaithersburgs, MD, 1994.

19. Object Management Group “CORBA Security,” OMG
document 95-12-1, 1995.

20. Zhang, A. and Elmagarmid, A. K. “A theory of global
control in multidatabase systems,” The VLDB Journal, pp.
331 - 360, vol. 2, No. 3, July 1993.

